The Crystal Structure of the Dimeric Complex of $24\langle O_5 - 2_4 . [(4',4'')-1,8-DiphenyInaphthalenol] coronand-5>* with KNCS$

GABRIELA WEBER

Anorganisch-Chemisches Institut der Universität, Tammannstrasse 4, D-3400 Göttingen, F.R.G.

Received January 12, 1983

Introduction

The title ligand and its 'stereologues' [2] contain ether O atoms and additional aromatic π donor centres. Hence they form stable complexes with Ag⁺ and with alkali cations [2]. On coordinating to K⁺, the bulky 1,8-diarylnaphthalene entity might be a steric hindrance, though aromatic interactions to potassium have been reported [3]. A structural investigation of the current compound therefore seemed interesting.

Experimental

A sample was kindly provided by Dr. R. Leppkes and Prof. F. Vögtle, University of D-5300 Bonn (F.R.G.). Colourless rods were grown from methanol. Crystal data: $C_{3Q}H_{30}O_5 \cdot KNCS$, $M_r = 576.75$, triclinic, space group P1, a = 9.480(3), b = 12.256(4), c = 13.732(4) Å, $\alpha = 107.70(4)$, $\beta = 94.59(3)$, $\gamma = 105.39$ (3)°, Z = 2, $d_{calc.} = 1.307$ Mg m⁻³, $\mu(MoK_{\alpha}) = 0.289$ mm⁻¹.

4256 unique profile-fitted [4] diffractometer data points were collected from a crystal ca. $0.4 \times 0.2 \times$ 0.2 mm, up to $2\theta = 47^{\circ}$ with monochromated MoK_{α}radiation ($\lambda = 0.71069$ Å). The structure was solved by direct methods and subsequent Fourier syntheses [5] and refined anisotropically using 2918 observed [$F > 3\sigma(F)$] reflections. A difference map then revealed all H atoms which were included in idealised positions (C-H = 0.96 Å) with $U(H_i)$ kept fixed at 1.2 $U_{eq}(C_i)$ during further refinement. The final R was 0.068 and $R_w = 0.056$ with $w^{-1} = \sigma^2(F_o) + 3 \times$ $10^{-4} F_o^2$.

Atom parameters are listed in Table I; a view of the dimer is given as Fig. 1. Further data may be obtained from GW on request.

Results and Discussion

It may be deduced from geometrical considerations (mean K^+ .. O ca. 2.8, O. O ca. 2.8 Å), and has been confirmed by stability constant measurements

0020-1693/83/\$3.00

TABLE I. Atomic Coordinates $(\times 10^4)$ and Isotropic Thermal Parameters (Å² × 10³).

	x	у	Z	U
K	6187(1)	5548(1)	3764(1)	66(1)
S	6095(1)	1655(1)	3941(1)	85(1)
С	5305(4)	2710(4)	4124(3)	64(2)
N	4710(4)	3428(3)	4252(3)	78(2)
0(1)	6791(3)	3779(2)	1645(2)	66(1)
C(2)	7679(4)	3244(4)	2133(3)	61(2)
C(3)	9098(4)	4178(4)	2702(3)	74(2)
O(4)	8846(3)	4968(3)	3621(2)	78(1)
C(5)	10137(5)	5952(4)	4209(4)	104(3)
C(6)	10217(5)	7016(4)	3926(4)	110(3)
O(7)	8963(3)	7401(3)	4167(2)	88(2)
C(8)	8956(5)	8413(4)	3885(4)	107(3)
C(9)	7559(5)	8688(4)	4088(4)	99(3)
O(10)	6374(3)	7729(2)	3389(2)	72(1)
C(11)	4991(6)	7962(4)	3447(3)	76(2)
C(12)	3887(4)	7037(3)	2558(3)	64(2)
O(13)	3661(3)	5869(2)	2651(2)	59(1)
C(14)	2712(4)	4916(3)	1846(3)	48(2)
C(15)	2427(4)	3792(3)	1944(3)	48(2)
C(16)	1488(4)	2792(3)	1168(3)	48(2)
C(17)	822(4)	2888(3)	264(3)	45(2)
C(18)	1111(4)	4028(3)	200(3)	51(2)
C(19)	2033(4)	5045(3)	975(3)	52(2)
C(20)	-239(4)	1846(3)	-595(3)	46(2)
C(21)	165(4)	915(3)	-1318(3)	48(2)
C(22)	-1002(4)	31(3)	-2129(3)	61(2)
C(23)	-2457(4)	104(4)	-2189(3)	75(2)
C(24)	-2796(4)	988(4)	-1502(3)	76(2)
C(25)	-1689(4)	1878(4)	-696(3)	61(2)
C(26)	1628(4)	778(3)	-1316(3)	54(2)
C(27)	1835(5)	-182(4)	-2067(3)	68(2)
C(28)	683(5)	-1030(4)	-2847(3)	78(2)
C(29)	-702(4)	-923(4)	-2871(3)	72(2)
C(30)	2988(4)	1591(3)	-532(3)	45(2)
C(31)	3601(4)	1137(3)	149(3)	55(2)
C(32)	4867(4)	1836(3)	884(3)	57(2)
C(33)	5554(4)	2998(4)	938(3)	52(2)
C(34)	4976(4)	3448(3)	231(3)	51 <u>(</u> 2)
C(35)	3715(4)	2750(4)	-490(3)	51(2)

*Equivalent isotropic U defined as one third of the trace of the orthogonalised U_{ij} tensor.

[6] and X-ray investigations [e.g. 7-9], that 18crown-6 and its derivatives provide a cavity of optimal geometry for the uptake of K⁺. With the smaller benzo-15-crown-5, however, a 2:1 'sandwich' complex is formed [10] in which the K⁺..bond valences [11] sum to 1.26 (cf. 0.90 in 18-crown-6-KSCN [7]), and the cation is totally shielded from the anion.

The title ligand also contains only five donor atoms but a 1:1 stoichiometry is nevertheless found. Closest distances C(30)...C(17) = 2.996(6), C(30)...C(16) = 3.032(7) and C(35)...C(17) = 3.036(6) Å

^{*}For nomenclature see [1].

Fig. 1. A perspective view of the dimer. Radii are arbitrary. Primed atoms are related to unprimed ones by inversion at 1/2, 1/2, 1/2. Coordination distances (Å) are to O(1): 3.254-(3), to O(4): 2.801(4), to O(7): 2.867(4), to O(10): 2.836-(4), to O(13): 2.916(3), to N: 2.905(5), to N': 2.929(5).

(dihedral angle between aryl planes: $17(1)^{\circ}$, to naphthalene plane: $69(1)^{\circ}$ each) despite systematically widened angles C(16)-C(17)-C(20): 123.8(3), C(17)-C(20)-C(21) = 125.1(3), C(20)-C(21)-C(26) = 126.3(3), C(21)-C(26)-C(30) = 125.3(3)and C(26)-C(30)-C(35) = 123.6(4) probably reflect the repulsion between the two aryl groups in the 1,8 positions of the naphthalene nucleus. The O(1).. O(13) distance is thus widened from *ca*. 2.4 Å [corresponding to C(20)...C(26)] to 4.452(4) Å, a value close to the 1...7 distance (*ca*. 4.85 Å) in a hexagonal arrangement of O atoms preferred by K⁺.

However, only four O atoms out of the five are coplanar to within ± 0.15 Å, O(1) deviating by 1.82(1)

Å (K⁺: -0.83(1) Å; cf. 1.67 in (benzo-15-crown-5)₂. KI [10]). Accordingly, this 'apical' atom shows the weakest coordination (if any) to K⁺. The five K⁺...O contacts (mean distance 2.86 Å, neglecting K⁺... $O(1) = 3.254(3); cf. 2.86 in (benzo-15-crown-5)_2 \cdot KI$ [10] and 2.80 in 18-crown-6·KSCN [7]) yield a sum of K⁺..O bond valences of only 0.55, indicating a rather weak linkage between host and guest. It seems that this lack of strong interactions can only be compensated for by the twofold binding of each K⁺ to two anions resulting in a four-membered [K-N-K-N] ring. Similar geometries have occasionally been observed with potassium [12, 13], particularly in the binuclear dibenzo-24-crown-8. 2KNCS complex [3]. In contrast to the latter, additional $\pi \dots K^+$ interactions are not obvious in the current structure since the shortest contact between an aromatic carbon and K^+ is >3.8 Å.

References

- 1 E. Weber and F. Vögtle, *Inorg. Chim. Acta Lett.*, 45, L65 (1980).
- 2 R. Leppkes and F. Vögtle, Chem. Ber., 116, 215 (1983).
- 3 M. Mercer and M. R. Truter, J. Chem. Soc, Dalton Trans., 2469 (1973).
- 4 W. Clegg, Acta Crystallogr., A37, 22 (1981).
- 5 Programs for structure solution, refinement and graphical display (SHELXTL) were written by G. M. Sheldrick, Göttingen (F.R.G.).
- 6 H. K. Frensdorff, J. Amer. Chem. Soc., 93, 600 (1971); R. M. Izatt, J. H. Rytting, D. P. Nelson, B. L. Haymore, and J. J. Christensen, J. Amer. Chem. Soc., 93, 1619 (1971).
- 7 P. Seiler, M. Dobler and J. D. Dunitz, *Acta Crystallogr.*, *B30*, 2744 (1974).
- 8 C. Riche, C. Pascard-Billy, C. Cambillau, and G. Bram, J. Chem. Soc., Chem. Commun., 183 (1977).
- 9 S. M. Aldoshin, O. A. D'yachenko, V. V. Tkachev, and L. O. Atovmyan, Soviet J. Coord. Chem., 7, 138 (1981).
- 10 P. R. Mallinson and M. R. Truter, J. Chem. Soc., Perkin Trans. II, 1818 (1972).
- 11 I. D. Brown and K. K. Wu, Acta Crystallogr., B32, 1957 (1976).
- 12 D. L. Hughes, C. L. Mortimer, and M. R. Truter, *Inorg. Chim. Acta*, 28, 83 (1978).
- 13 P. G. Jones, W. Clegg, and G. M. Sheldrick, Acta Crystallogr., B36, 160 (1980).